Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(4): 1277-1289, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359461

RESUMO

Predicting the synthesizability of a new molecule remains an unsolved challenge that chemists have long tackled with heuristic approaches. Here, we report a new method for predicting synthesizability using a simple yet accurate thermochemical descriptor. We introduce Emin, the energy difference between a molecule and its lowest energy constitutional isomer, as a synthesizability predictor that is accurate, physically meaningful, and first-principles based. We apply Emin to 134,000 molecules in the QM9 data set and find that Emin is accurate when used alone and reduces incorrect predictions of "synthesizable" by up to 52% when used to augment commonly used prediction methods. Our work illustrates how first-principles thermochemistry and heuristic approximations for molecular stability are complementary, opening a new direction for synthesizability prediction methods.


Assuntos
Heurística , Isomerismo
2.
Adv Sci (Weinh) ; 11(13): e2308813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38268161

RESUMO

Rare-earth complexes are vital for separation chemistry and useful in many advanced applications including emission and energy upconversion. Here, 2D rare-earth clusters having net charges are formed on a metal surface, enabling investigations of their structural and electronic properties on a one-cluster-at-a-time basis using scanning tunneling microscopy. While these ionic complexes are highly mobile on the surface at ≈100 K, their mobility is greatly reduced at 5 K and reveals stable and self-limiting clusters. In each cluster, a pair of charged rare-earth complexes formed by electrostatic and dispersive interactions act as a basic unit, and the clusters are chiral. Unlike other non-ionic molecular clusters formed on the surfaces, these rare-earth clusters show mechanical stability. Moreover, their high mobility on the surface suggests that they are in a 2D liquid-like state.

4.
Faraday Discuss ; 248(0): 48-59, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37791512

RESUMO

Developing batteries with energy densities comparable to internal combustion technology is essential for a worldwide transition to electrified transportation. Li-O2 batteries are seen as the 'holy grail' of battery technologies since they have the highest theoretical energy density of all battery technologies. Current lithium-oxygen (Li-O2) batteries suffer from large charge overpotentials related to the electronic resistivity of the insulating lithium peroxide (Li2O2) discharge product. One potential solution is the formation and stabilization of a lithium superoxide (LiO2) discharge intermediate that exhibits good electronic conductivity. However, LiO2 is reported to be unstable at ambient temperature despite its favorable formation energy at -1.0 eV per atom. In this paper - based on our recent work on the development of cathode materials for aprotic lithium oxygen batteries including two intermetallic compounds, LiIr3 and LiIr, that are found to form good template interfaces with LiO2 - a simple goodness of fit R factor to gauge how well a template surface structure can support LiO2 growth, is developed. The R factor is a quantitative measurement to calculate the geometric difference in the unit cells of specific Miller Index 2D planes of the template surface and LiO2. Using this as a guide, the R factors for LiIr3, LiIr, and La2NiO4+δ, are found to be good. This guide is attested by simple extension to other noble metal intermetallics with electrochemical cycling data including LiRh3, LiRh, and Li2Pd. Finally, the template concept is extended to main group elements and the R factors for LiO2 (111) and Li2Ca suggest that Li2Ca is a possible candidate for the template assisted LiO2 growth strategy.

5.
Faraday Discuss ; 248(0): 134-144, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37791894

RESUMO

There is much interest in developing new energy storage systems to replace currently available ones that mainly work based on Li-ion intercalations. One attractive area is the Li-air battery for which most of the research has involved liquid electrolytes. There have been few studies on the use of a solid electrolyte in a Li-air battery. Recently, we reported the successful use of a solid-state electrolyte in a Li-air battery resulting in a Li2O product and potentially much higher energy density than in a Li-air battery based on either a Li2O2 or LiO2 product (Science, 2023, 379, 499). In this paper we discuss how the discharge mechanism involved in this solid-state Li-air battery differs from that of a Li-air battery with a liquid electrolyte. The solid-state mechanism is further explored with density functional studies of various interfaces involving the discharge product. We discuss the relevance of the results to the discharge mechanism in the solid-state Li-air battery.

7.
Inorg Chem ; 62(32): 12721-12729, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37506323

RESUMO

Variable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted D3h symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals (g⊥ = 2.001 and g∥ = 1.994) that were successfully simulated with two Eu isotopes with nuclear spin 5/2 (151Eu and 153Eu with 48% and 52% natural abundance, respectively) and nuclear g-factors 151Eu/153Eu = 2.27. Illumination of water-soluble complex Eu(dipic)3 at 4 K led to the ligand-to-metal charge transfer (LMCT) that resulted in the formation of Eu(II) in a rhombic environment (gx = 2.006, gy = 1.995, gz = 1.988). The existence of LMCT affects the luminescence of Eu(dipic)3, and pre-reduction of the complex to Eu(II)(dipic)3 reversibly reduces red luminescence with the appearance of a weak CT blue luminescence. Furthermore, encapsulation of a large portion of the dipic ligand with Cucurbit[7]uril, a pumpkin-shaped macrocycle, inhibited ligand-to-metal charge transfer, preventing the formation of Eu(II) upon illumination.

8.
Nat Chem ; 15(9): 1247-1254, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37414882

RESUMO

A major impediment to Li-O2 battery commercialization is the low discharge capacities resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated Li2O2 film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O2/Li2O2 discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.

9.
J Phys Chem A ; 127(28): 5914-5920, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406209

RESUMO

In previous work (Dandu et al., J. Phys. Chem. A, 2022, 126, 4528-4536), we were successful in predicting accurate atomization energies of organic molecules using machine learning (ML) models, obtaining an accuracy as low as 0.1 kcal/mol compared to the G4MP2 method. In this work, we extend the use of these ML models to adiabatic ionization potentials on data sets of energies generated using quantum chemical calculations. Atomic specific corrections that were found to improve atomization energies from quantum chemical calculations have also been used in this study to improve ionization potentials. The quantum chemical calculations were performed on 3405 molecules containing eight or fewer non-hydrogen atoms derived from the QM9 data set, using the B3LYP functional with the 6-31G(2df,p) basis set for optimization. Low-fidelity IPs for these structures were obtained using two density functional methods: B3LYP/6-31+G(2df,p) and ωB97XD/6-311+G(3df,2p). Highly accurate G4MP2 calculations were performed on these optimized structures to obtain high-fidelity IPs to use in ML models based on the low-fidelity IPs. Our best performing ML methods gave IPs of organic molecules within a mean absolute deviation of 0.035 eV from the G4MP2 IPs for the whole data set. This work demonstrates that ML predictions assisted by quantum chemical calculations can be used to successfully predict IPs of organic molecules for use in high throughput screening.

10.
Science ; 379(6631): 499-505, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730408

RESUMO

A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.

11.
ACS Appl Mater Interfaces ; 15(5): 7518-7528, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715357

RESUMO

Charge transfer across the electrode-electrolyte interface is a highly complex and convoluted process involving diverse solvated species with varying structures and compositions. Despite recent advances in in situ and operando interfacial analysis, molecular specific reactivity of solvated species is inaccessible due to a lack of precise control over the interfacial constituents and/or an unclear understanding of their spectroscopic fingerprints. However, such molecular-specific understanding is critical to the rational design of energy-efficient solid-electrolyte interphase layers. We have employed ion soft landing, a versatile and highly controlled method, to prepare well-defined interfaces assembled with selected ions, either as solvated species or as bare ions, with distinguishing molecular precision. Equipped with precise control over interfacial composition, we employed in situ multimodal spectroscopic characterization to unravel the molecular specific reactivity of Mg solvated species comprising (i.e., bis(trifluoromethanesulfonyl)imide, TFSI-) anions and solvent molecules (i.e., dimethoxyethane, DME/G1) on a Mg metal surface relevant to multivalent Mg batteries. In situ multimodal spectroscopic characterization revealed higher reactivity of the undercoordinated solvated species [Mg-TFSI-G1]+ compared to the fully coordinated [Mg-TFSI-(G1)2]+ species or even the bare TFSI-. These results were corroborated by the computed reaction pathways and energy barriers for decomposition of the TFSI- within Mg solvated species relative to bare TFSI-. Finally, we evaluated the TFSI reactivity under electrochemical conditions using Mg(TFSI)2-DME-based phase-separated electrolytes representing different solvated constituents. Based on our multimodal study, we report a detailed understanding of TFSI- decomposition processes as part of coordinated solvated species at a Mg-metal anode that will aid the rational design of improved sustainable electrochemical energy technologies.

12.
Chem Asian J ; 18(2): e202201120, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36482038

RESUMO

The fundamental process in non-aqueous redox flow battery (NRFB) operation revolves around electron transfer (ET) between a current collector electrode and redox-active organic molecules (redoxmers) in solution. Here, we present an approach utilizing scanning electrochemical microscopy (SECM) to evaluate interfacial ET kinetics between redoxmers and various electrode materials of interest at desired locations. This spot-analysis method relies on the measurement of heterogeneous electron transfer rate constants (kf or kb ) as a function of applied potential (E-E0 '). As demonstrated by COMSOL simulations, this method enables the quantification of Butler-Volmer kinetic parameters, the standard heterogeneous rate constant, k0 , and the transfer coefficient, α. Our method enabled the identification of inherent asymmetries in the ET kinetics arising during the reduction of ferrocene-based redoxmers, compared to their oxidation which displayed faster rate constants. Similar behavior was observed on a wide variety of carbon electrodes such as multi-layer graphene, highly ordered pyrolytic graphite, glassy carbon, and chemical vapor deposition-grown graphite films. However, aqueous systems and Pt do not exhibit such kinetic effects. Our analysis suggests that differential adsorption of the redoxmers is insufficient to account for our observations. Displaying a greater versatility than conventional electroanalytical methods, we demonstrate the operation of our spot analysis at concentrations up to 100 mM of redoxmer over graphite films. Looking forward, our method can be used to assess non-idealities in a variety of redoxmer/electrode/solvent systems with quantitative evaluation of kinetics for applications in redox-flow battery research.


Assuntos
Grafite , Grafite/química , Carbono/química , Microscopia Eletroquímica de Varredura , Oxirredução , Eletrodos , Cinética
13.
ACS Nano ; 16(11): 18187-18199, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326201

RESUMO

The rechargeable lithium-oxygen (Li-O2) battery has the highest theoretical specific energy density of any rechargeable batteries and could transform energy storage systems if a practical device could be attained. However, among numerous challenges, which are all interconnected, are polarization due to sluggish kinetics, low cycle life, small capacity, and slow rates. In this study, we report on use of KMnO4 to generate a colloidal electrolyte made up of MnO2 nanoparticles. The resulting electrolyte provides a redox mediator for reducing the charge potential and lithium anode protection to increase cycle life. This electrolyte in combination with a stable binary transition metal dichalcogenide alloy, Nb0.5Ta0.5S2, as the cathode enables the operation of a Li-O2 battery at a current density of 1 mA·cm-2 and specific capacity ranging from 1000 to 10 000 mA·h·g-1 (corresponding to 0.1-1 mA·h·cm-2) in a dry air environment with a cycle life of up to 150. This colloidal electrolyte provides a robust approach for advancing Li-air batteries.

14.
Nat Commun ; 13(1): 6305, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273005

RESUMO

Complexes containing rare-earth ions attract great attention for their technological applications ranging from spintronic devices to quantum information science. While charged rare-earth coordination complexes are ubiquitous in solution, they are challenging to form on materials surfaces that would allow investigations for potential solid-state applications. Here we report formation and atomically precise manipulation of rare-earth complexes on a gold surface. Although they are composed of multiple units held together by electrostatic interactions, the entire complex rotates as a single unit when electrical energy is supplied from a scanning tunneling microscope tip. Despite the hexagonal symmetry of the gold surface, a counterion at the side of the complex guides precise three-fold rotations and 100% control of their rotational directions is achieved using a negative electric field from the scanning probe tip. This work demonstrates that counterions can be used to control dynamics of rare-earth complexes on materials surfaces for quantum and nanomechanical applications.

15.
ACS Appl Mater Interfaces ; 14(38): 43171-43179, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171685

RESUMO

Solid acid catalysts, including zeolites and amorphous silica-aluminas (ASAs), are industrially important materials widely used in the fuel and petrochemical industries. The versatility of zeolites is due to the Brønsted acidity of the bridging hydroxyl and shape selectivity that can be tailored during and after synthesis. This is in contrast to amorphous silica-alumina, where tailoring acidity is a major challenge as the Brønsted acid structure in ASA is still debated. In both cases, however, the pore size and acidity cannot be tuned independently, and this is particularly limiting in the application of biomass conversion, where zeolite pores are too small for the molecules of interest. Herein, we present a method using atomic layer deposition (ALD) to prepare thin films of solid acid materials where the ratio of Brønsted to Lewis acid sites can be tuned precisely. This capability, combined with the sub-nm pore size control afforded by ALD yields a powerful and flexible method for synthesizing solid acid catalysts inside virtually any mesoporous host. We demonstrate the utility of these materials in two acid-catalyzed reactions relevant to biomass conversion: (1) Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction and dehydration of fructose and (2) cascade reaction of glucose to 5-hydroxymethylfurfural. Finally, we propose a plausible structure for the Brønsted acid sites in our materials based on infrared spectroscopy and solid-state nuclear magnetic resonance measurements and density functional theory calculations and argue that this same structure might apply to conventional ASAs as well.

16.
ACS Cent Sci ; 8(7): 880-890, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35912355

RESUMO

Bottom-up understanding of transport describes how molecular changes alter species concentrations and electrolyte voltage drops in operating batteries. Such an understanding is essential to predictively design electrolytes for desired transport behavior. We herein advocate building a structure-property-performance relationship as a systematic approach to accurate bottom-up understanding. To ensure generalization across salt concentrations as well as different electrolyte types and cell configurations, the property-performance relation must be described using Newman's concentrated solution theory. It uses Stefan-Maxwell diffusivity, ij , to describe the role of molecular motions at the continuum scale. The key challenge is to connect ij to the structure. We discuss existing methods for making such a connection, their peculiarities, and future directions to advance our understanding of electrolyte transport.

17.
J Phys Chem A ; 126(27): 4528-4536, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786965

RESUMO

G4MP2 theory has proven to be a reliable and accurate quantum chemical composite method for the calculation of molecular energies using an approximation based on second-order perturbation theory to lower computational costs compared to G4 theory. However, it has been found to have significantly increased errors when applied to larger organic molecules with 10 or more nonhydrogen atoms. We report here on an investigation of the cause of the failure of G4MP2 theory for such larger molecules. One source of error is found to be the "higher-level correction (HLC)", which is meant to correct for deficiencies in correlation contributions to the calculated energies. This is because the HLC assumes that the contribution is independent of the element and the type of bonding involved, both of which become more important with larger molecules. We address this problem by adding an atom-specific correction, dependent on atom type but not bond type, to the higher-level correction. We find that a G4MP2 method that incorporates this modification of the higher-level correction, referred to as G4MP2A, becomes as accurate as G4 theory (for computing enthalpies of formation) for a test set of molecules with less than 10 nonhydrogen atoms as well as a set with 10-14 such atoms, the set of molecules considered here, with a much lower computational cost. The G4MP2A method is also found to significantly improve ionization potentials and electron affinities. Finally, we implemented the G4MP2A energies in a machine learning method to predict molecular energies.

18.
ACS Appl Mater Interfaces ; 14(5): 7428-7439, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089684

RESUMO

Intermixing of atomic species at the electrode-electrolyte boundaries can impact the properties of the interfaces in solid-state batteries. Herein, this work uses first-principles statistical mechanics along with experimental characterization to understand intermixing at the electrode-electrolyte interface. For the model presented in this work, lithium manganese oxide (LiMn2O4, LMO) and lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) are employed as the cathode and electrolyte, respectively. The results of the computational work show that Ti-Mn intermixing at the interface is significant at synthesis temperatures. The experimental results in this work find that, at some critical temperatures between 600 and 700 °C for material preparation, the interface of LLTO-LMO becomes blurred. Calculations predict that the interface is unstable with regard to Ti-Mn intermixing starting at 0 K, suggesting that the critical temperature found in the experiment is related to kinetics. The work overall suggests that, in designing a solid-state battery, the fundamental reactions such as intermixing need to be considered.

19.
Small ; 18(4): e2102902, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083855

RESUMO

Lithium-oxygen batteries are among the most attractive alternatives for future electrified transportation. However, their practical application is hindered by many obstacles. Due to the insulating nature of Li2 O2 product and the slow kinetics of reactions, attaining sustainable low charge overpotentials at high rates becomes a challenge resulting in the battery's early failure and low round trip efficiency. Herein, outstanding characteristics are discovered of a conductive metal organic framework (c-MOF) that promotes the growth of nanocrystalline Li2 O2 with amorphous regions. This provides a platform for the continuous growth of Li2 O2 units away from framework, enabling a fast discharge at high current rates. Moreover, the Li2 O2 structure works in synergy with the redox mediator (RM). The conductivity of the amorphous regions of the Li2 O2 allows the RM to act directly on the Li2 O2 surface instead of catalyst edges and then transport through the electrolyte to the Li2 O2 surface. This direct charge transfer enables a small charge potential of <3.7 V under high current densities (1-2 A g-1 ) sustained for a long cycle life (100-300 cycles) for large capacities (1000-2000 mAh g-1 ). These results open a new direction for utilizing c-MOFs towards advanced energy storage systems.

20.
Phys Chem Chem Phys ; 24(2): 674-686, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908060

RESUMO

Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...